

CUETUG Previous Year Question Paper 2022

Download the Prepwise App Now!

Call or WhatsApp 91+ 7994441041 Join Kerala's No.1 CUET UG Entrance Coaching

CUET UG

Previous Year Question Paper

2022

Section II
Mathematics

Section Name: Compulsory

Question:

In a sequence of Bernoulli trials with p=3/4, the probability that first success occurs after four failures, is :

 $\frac{3}{512}$

 $\frac{3}{1024}$

 $\frac{\mathbf{c}}{2}$

 $\frac{\mathbf{D}}{4}$

Section Name: Compulsory

Question:

If
$$\begin{bmatrix} x-4 & 2 & -1 \\ -2 & y-2 & 6 \\ 1 & -6 & z+3 \end{bmatrix}$$
 is skew-symmetric matrix, then the value of $\begin{vmatrix} x & y & z \\ y & z & x \\ z & x & y \end{vmatrix}$ is :

A 144

B 117

c -117

D

Section Name: Compulsory

Question:

If
$$A = \begin{bmatrix} 2 & -1 & 6 \end{bmatrix}_{1 \times 3}$$
 and $B = \begin{bmatrix} 1 \\ 4 \\ 6 \end{bmatrix}_{3 \times 1}$, then sum of elements of matrix BA is:

A	11
В	77
C	88

Section Name: Compulsory

Question:

The function $f(x) = 2x^3 - 3x^2 - 36x + 10$ is strictly increasing in :

$$^{\mathbf{A}}$$
 $(-\infty,-2) \cup (3,\infty)$

^B
$$(-\infty,-1) \cup (2,\infty)$$

$$^{\mathbf{C}}$$
 $(-\infty, 0)$

Section Name: Compulsory Question:

If $x = at^2$ and y = 2at, then the value of $\frac{d^2y}{dx^2}$ at t = 2 is:

$$-\frac{1}{4a}$$

$$-\frac{1}{16}$$

$$-\frac{1}{16a}$$

Section Name: Compulsory

Question:

The function
$$f(x) = x^3 + \frac{5}{2}x^2 - 2x - 3$$
, has :

- A two points of local maxima
- B two points of local minima
- one point of local maxima and one point of local minima
- no point of local maxima or minima

Section Name: Compulsory Question:

If
$$\int (x^2 + \sqrt{x}) dx = ax^3 + bx^{3/2} + c$$
 where a, b and c are constants, then the value of

$$\frac{9}{5} (a^2 + b^2)$$
 is:

A	5
	9

$$\frac{1}{3}$$

$$\frac{c}{3}$$

Section Name: Compulsory Question:

$$\int_{-4}^{4} \log_{e} \left(\frac{5+x}{5-x} \right) dx \text{ is equal to :}$$

$$-\frac{16}{9}$$

Section Name:Compulsory **Question:**

The area enclosed by two circles $x^2 + y^2 = a^2$ and $(x - a)^2 + y^2 = a^2$ is:

$$\left(\frac{4\pi-\sqrt{3}}{6}\right)a^2$$

$$\left(\frac{4\pi-3\sqrt{3}}{6}\right)a^2$$

$$\frac{\pi - \sqrt{3}}{6} a^2$$

$$\frac{2\sqrt{3} - \pi}{6}$$
 a²

Section Name: Compulsory Question:

The order and degree of the differential equation $\sqrt{x} \frac{dy}{dx} + 1 = \frac{d^2y}{dx^2} + \frac{dy}{dx}$ are respectively:

- ^A 1 and 2
- B 2 and 1
- c 2 and 2
- D 1 and 1

Section Name: Compulsory

Question:

The general solution of the differential equation $\frac{dx}{dy} = 2ye^{y^2-x}$ is:

$$e^y = e^{x^2} + c$$

$$e^{x} = e^{y^{2}} + c$$

$$e^{-y} + e^{x^2} = c$$

$$e^{x^2} - y = 0$$

The differential equation representing the family of curves given by $y = e^{-x}(a + bx)$ is :

$$\frac{\mathrm{d}^2 y}{\mathrm{d}x^2} = \mathrm{e}^x \left(\frac{\mathrm{d}y}{\mathrm{d}x} \right)$$

$$\frac{\mathrm{d}^2 y}{\mathrm{d}x^2} + 2\,\frac{\mathrm{d}y}{\mathrm{d}x} + y = 0$$

$$\frac{\mathrm{d}^2 y}{\mathrm{d}x^2} - \frac{\mathrm{d}y}{\mathrm{d}x} - y = 0$$

$$\frac{\mathrm{d}^2 y}{\mathrm{d}x^2} + 2\,\frac{\mathrm{d}y}{\mathrm{d}x} + 7x = 0$$

Section Name: Compulsory

Question:

If the difference between mean and variance of a binomial distribution B(n, p) is 1 and the difference of their squares is 15, then :

 $n = 64, p = \frac{1}{8}$

n = 64, p = $\frac{7}{8}$

n = 32, p = $\frac{1}{8}$

n = 32, p = $\frac{7}{8}$

Section Name: Compulsory

Question:

The variance of the first 16 natural numbers is:

 $\frac{85}{4}$

 $\frac{56}{3}$

C 24

 $\frac{133}{4}$

Question:

The corner points of the feasible region of an L.P.P. is shown in the Fig maximum and minimum values of the objective function z = 2x + y is

- A 180
- B 340
- c 260
- D 280

Section Name: Mathematics Core Question:

Let $f: \mathbb{R} \to [0, \infty)$ be defined by $f(x) = x^2 + |x - 5|$. Then f is :

- A one-one but not onto.
- B neither one-one nor onto.
- c one-one and onto.
- onto but not one-one.

Section Name: Mathematics Core

Question:

Let R be a relation on the set $A = \{1, 2, 3, 4, 5, 6\}$ defined as $R = \{(x,y) : x + y \text{ is divisible by } y, x \le y\}$. Then R is :

- A reflexive but neither symmetric nor transitive.
- ^B reflexive and transitive but not symmetric.
- c an equivalences relation.
- D reflexive, symmetric but not transitive.

Section Name: Mathematics Core Question:

Let
$$A = \begin{bmatrix} 2 & 3 \\ -1 & 1 \end{bmatrix}$$
 and $B = \frac{1}{5} \begin{bmatrix} a & b \\ c & d \end{bmatrix}$. If $B = A^{-1}$, then $(d - b)$ is equal to:

- $\mathbf{A} 1$
- B 5
- C -5
- **D** 1

Section Name: Mathematics Core Question:

If the matrix
$$\begin{bmatrix} x^2 - 3x + 2 & 1 & 3 \\ -1 & 2x^2 - 3x + 1 & -7 \\ -3 & 7 & x^2 - 7x + 6 \end{bmatrix}$$
 is skew symmetric, then x is

equal to:

A	1
	1

$$\frac{D}{2}$$

Section Name: Mathematics Core Question:

The value of
$$\int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \sin^7 x dx$$
 is:

A (

 $\frac{5\pi}{16}$

C π

 $\frac{32}{5}$

Section Name: Mathematics Core Question:

$$\int \frac{\cot^4 \sqrt{x} \csc^2 \sqrt{x}}{\sqrt{x}} dx \text{ is equal to :}$$

$$\frac{2}{5}\cot^5\sqrt{x} + c$$

$$-\cot^5\sqrt{x}+c$$

$$-\frac{2}{5}\cot^5\sqrt{x} + c$$

$$-\frac{5}{2}\cot^5\sqrt{x} + c$$

7

CUET 2022 QUESTION PAPER

Section Name: Mathematics Core Question:

$$\int \frac{\mathrm{d}x}{x\sqrt{\mathrm{a}x-x^2}}$$
 is equal to:

$$\frac{1}{a} \frac{\sqrt{x}}{\sqrt{a-x}} + C$$

$$-\frac{2}{a}\frac{\sqrt{x}}{\sqrt{a-x}}+C$$

$$-\frac{\sqrt{a-x}}{\sqrt{x}} + C$$

$$-\frac{2}{a}\frac{\sqrt{a-x}}{\sqrt{x}}+C$$

Question:

Match List - I with List - II.

List - I

List - II

(A)
$$\int e^{x} \left(\frac{1}{x} - \frac{1}{x^2} \right) dx =$$
 (I) $e^{x} (x^2 - 2x + 2) + C$

(I)
$$e^x(x^2-2x+2)+C$$

(B)
$$\int xe^x dx =$$

(II)
$$-\frac{e^x}{x^2} + C$$

(C)
$$\int x^2 e^x \, dx =$$

(III)
$$\frac{e^x}{x} + C$$

(D)
$$\int e^x \left(-\frac{1}{x^2} + \frac{2}{x^3} \right) dx =$$
 (IV) $e^x(x-1) + C$

Choose the correct answer from the options given below:

Section Name: Mathematics Core Question:

The value of
$$\int_{0}^{1} \tan^{-1} \left(\frac{2x-1}{1+x-x^2} \right) dx$$
 is:

 $\frac{\Lambda}{2}$

B (

C

 $\frac{\pi}{4}$

Section Name: Mathematics Core Question:

$$\int_{1}^{e} \frac{\log_{e} x}{x} dx$$
 is equal to:

 $\frac{1}{2}$

В (

c 1

 $\frac{1}{4}$

Section Name: Mathematics Core Question:

The principal value of
$$\cos^{-1}\left(\cos\frac{7\pi}{6}\right) + \sin^{-1}\left(\sin\frac{7\pi}{6}\right)$$
 is:

 $\frac{4\pi}{3}$

 $\frac{2\pi}{3}$

C T

 $\frac{\pi}{3}$

Section Name: Mathematics Core Question:

$$f(x) = \begin{cases} ax + 1, & x \le 3 \\ bx + 3, & x > 3 \end{cases}$$
 is continuous, then:

A
$$2a + 2b = 3$$

$$a + 3b = 2$$

$$a - 3b = 2$$

$$a - 2b = 3$$

Section Name: Mathematics Core Question:

The sum of the ordinates of the points where the tangents to the curve $y = x^3 - 3x^2 - 9x + 7$ are parallel to the *x*-axis is :

- -24
- B 16
- C _8
- D 56

Question:

The solution of the differential equation $\frac{dy}{dx} = \frac{x+y}{x-y}$, is:

$$\tan^{-1}\left(\frac{y}{x}\right) = \log_{e}|x| + C$$

$$\tan^{-1}\left(\frac{y}{x}\right) = \frac{1}{2}\log_{e}(x^{2} + y^{2}) + C$$

$$\tan^{-1} \frac{y}{x} = \log_e \left(\frac{x^2 + y^2}{x^2} \right) + C$$

$$x^2 + y^2 = C (x^2 - y^2)$$

Section Name: Mathematics Core Question:

If the lines
$$\frac{x+1}{3} = \frac{y+2}{2k} = \frac{z-3}{-2}$$
 and $\frac{x-1}{2k} = \frac{y-1}{-1} = \frac{z-1}{2}$ are perpendicular, then

k is equal to:

$$-\frac{1}{2}$$

$$-1$$

CUFT 2022 OUFSTION PAPER

Section Name: Mathematics Core

Question:

Out of the given statements, choose the correct statements:

(A) The line
$$\frac{x-1}{1} = \frac{y-2}{1} = \frac{z-3}{1}$$
 is parallel to the plane $2x-y-z=3$.

- (B) The direction ratios of the normal to the plane x+y-z=4 is 1, 1, -1.
- (C) The direction ratios of the line $\frac{x}{3} = \frac{y}{2} = \frac{z}{1}$ is 3, 2, 1.

(D) If
$$\vec{a} = \hat{i} + \hat{j}$$
, then the unit vector $\hat{a} = \frac{\hat{i} + \hat{j}}{\sqrt{3}}$

(E) If $\overrightarrow{a} = \overrightarrow{i}$ and $\overrightarrow{b} = \overrightarrow{k}$, then the angle between \overrightarrow{a} and \overrightarrow{b} is zero. Choose the **correct** answer from the options given below:

A (A), (B), (D) only

^B (A), (B), (E) only

^C (C), (D), (E) only

D (A), (B), (C) only

Section Name: Mathematics Core

Question:

The distance of the point (2, 5, -3) from the plane $\vec{r} \cdot \left(6\hat{i} - 3\hat{j} + 2\hat{k}\right) = 4 \text{ is}$:

 $\frac{A}{7}$

 $\frac{29}{7}$

 $\frac{1}{7}$

 $\frac{13}{7}$

Section Name: Mathematics Core Question:

The acute angle between the two planes 2x+y-2z=5 and 3x-6y-2z=7 is :

 $\cos^{-1}\left(\frac{4}{21}\right)$

 $\cos^{-1}\left(\frac{16}{21}\right)$

 $\sin^{-1}\left(\frac{2}{21}\right)$

 $\sin^{-1}\left(\frac{4}{21}\right)$

Section Name: Mathematics Core Question:

The differential equation representing family of curves $y = ae^x + be^{-2x}$, where a and b are arbitrary constants, is :

$$\frac{\mathrm{d}^2 y}{\mathrm{d}x^2} + \frac{\mathrm{d}y}{\mathrm{d}x} - y = 0$$

$$2 \frac{d^2y}{dx^2} + 3\frac{dy}{dx} - 4y = 0$$

$$\frac{\mathrm{d}^2 y}{\mathrm{d}x^2} + \frac{\mathrm{d}y}{\mathrm{d}x} - 2y = 0$$

$$\frac{\mathrm{d}^2 y}{\mathrm{d}x^2} + 4y = 0$$

Section Name: Mathematics Core Question:

The equation of the plane, containing line of intersection of planes x+3y-z=5 and 2x-y+z=3 and passes through (2, 1, -2) is :

A
$$3x + 2y - 8 = 0$$

B
$$x + 3y + 2z - 8 = 0$$

C
$$3x + 2y + 2z - 4 = 0$$

$$\mathbf{D} \quad x + y + z - 1 = 0$$

Section Name: Mathematics Core Question:

If two sides of triangle are represented by the vectors $-\hat{i}+\hat{j}+2\hat{k}$ and $2\hat{i}-\hat{j}+4\hat{k}$, then area of triangle is :

- $\frac{1}{2}\sqrt{101}$
- $\frac{1}{2}\sqrt{51}$
- $^{\text{C}}$ $\sqrt{101}$
- D E

Section Name: Mathematics Core

Question:

The unit vectors perpendicular to planes x+2y+3z-1=0 and x+y-z+8=0 are :

$$\pm \frac{1}{\sqrt{3}} (\hat{i} - \hat{j} + \hat{k})$$

$$\pm \frac{1}{7} \left(2\hat{i} - 3\hat{j} + 6\hat{k} \right)$$

$$\pm \frac{1}{\sqrt{42}} \left(5\hat{i} - 4\hat{j} + \hat{k} \right)$$

$$\pm \frac{1}{\sqrt{11}} \left(3\hat{i} - \hat{j} - \hat{k} \right)$$

Section Name: Mathematics Core Question:

The optimal value of the linear programming problem

$$\min(z) = 3x + 9y$$

subject to constraints

$$x + 3y \le 60,$$

$$x+y \ge 10$$
,

$$x \leq y$$
,

$$x \ge 0$$
 and $y \ge 0$ is:

A (

B 30

c 90

D 60

Section Name: Mathematics Core Question:

Three identical boxes have 2 coins each as follows: box-1 has 2 gold coins, box-2 has 2 silver coins, box-3 has one gold and one siver coin. If a box is chosen at random and one gold coin is taken out from it, then the probability that the other coin in the box is also of gold is:

A	$\frac{2}{3}$
В	<u>2</u> 5
С	$\frac{1}{3}$
D	$\frac{1}{2}$

Section Name: Mathematics Core

Question:

A person P fires 4 shots at a target. It the probability of each shot hitting the target is 0.7, then the probability that - P hits the target atleast once is :

A 0.2401

B 0.0081

c 0.9919

D 0.7599

Section Name: Mathematics Core Question:

For two vectors \overrightarrow{a} and \overrightarrow{b} , If $|\overrightarrow{a}| = 2$, $|\overrightarrow{b}| = 3$ and $|\overrightarrow{a} \times \overrightarrow{b}| = 2\sqrt{5}$ then answer the following question:

$$\begin{vmatrix} \rightarrow & \rightarrow \\ a - b \end{vmatrix}$$
 is equal to :

- A 5
- $^{\mathbf{B}}$ $\sqrt{5}$
- C :
- D 3

Section Name: Mathematics Core

Question:

For two vectors \overrightarrow{a} and \overrightarrow{b} , If $|\overrightarrow{a}| = 2$, $|\overrightarrow{b}| = 3$ and $|\overrightarrow{a} \times \overrightarrow{b}| = 2\sqrt{5}$ then answer the following question:

$$\begin{vmatrix} \rightarrow & \rightarrow \\ a + b \end{vmatrix}$$
 is equal to :

- $^{\rm A}$ $\sqrt{21}$
- B 21
- C \subseteq 5
- D 5

Question:

For two vectors $\stackrel{\rightarrow}{a}$ and $\stackrel{\rightarrow}{b}$, If $|\stackrel{\rightarrow}{a}| = 2$, $|\stackrel{\rightarrow}{b}| = 3$ and $|\stackrel{\rightarrow}{a} \times \stackrel{\rightarrow}{b}| = 2\sqrt{5}$ then answer the following question :

The projection of $\stackrel{\rightarrow}{a}$ on $\stackrel{\rightarrow}{b}$ is :

- A 2
- $\frac{8}{3}$
- $\frac{\mathbf{c}}{3}$
- D 6

Section Name: Mathematics Core Question:

For two vectors $\stackrel{\rightarrow}{a}$ and $\stackrel{\rightarrow}{b}$, If $|\stackrel{\rightarrow}{a}|=2$, $|\stackrel{\rightarrow}{b}|=3$ and $|\stackrel{\rightarrow}{a}\times\stackrel{\rightarrow}{b}|=2\sqrt{5}$ then answer the following question :

If θ is the angle between the vectors $\vec{a} + \vec{b}$ and $\vec{a} - \vec{b}$ then $\sin^2\theta$ is equal to :

A	5
	21

$$\frac{20}{21}$$

$$\frac{c}{9}$$

$$\frac{16}{21}$$

Section Name: Mathematics Core

Question:

For two vectors \overrightarrow{a} and \overrightarrow{b} , If $|\overrightarrow{a}| = 2$, $|\overrightarrow{b}| = 3$ and $|\overrightarrow{a} \times \overrightarrow{b}| = 2\sqrt{5}$ then answer the following question:

The area of the triangle formed by the vectors a and b is:

- A $\sqrt{5}$
- $^{\mathrm{B}}$ $2\sqrt{5}$
- C
- D e

Question:

Based on the given information answer the following questions:

A man plans to jump and climb the stairs. If the path (as shown in the figure), he moves on for the first jump is given by the function $y = f(x) = 2x + \sqrt{4x - 12x^2}$, where x (in meters) is the horizontal distance covered and y (in meter) is the corresponding height attained. Assume that his initial position is origin.

The domain of the function is:

A

$$\left[-\frac{1}{\sqrt{3}},\,\frac{1}{\sqrt{3}}\right]$$

F

$$\left[0,\,\frac{1}{3}\right]$$

C

$$\left[0,\frac{2}{3}\right]$$

D

$$\left[\frac{1}{3}, 3\right]$$

The function is strictly increasing in:

 $\left(0,\frac{1}{3}\right)$

 $\left(0,\,\frac{1}{4}\right)$

C

 $\left(\frac{1}{12}, \frac{1}{3}\right)$